Let's talk SmallSat: Thoughts on Future Opportunities for Small Satellites

"Small Satellites are Technology Miracle Boxes!" (Hans-Peter Roeser, 1949-2015)

l 2th of May 2020 Space Café WebTalk - SpaceWatch.Global

Prof. Dr. René Laufer IAA Permanent Committee on Small Satellite Missions CASPER Space Science Lab – Baylor University, USA SpaceLab – University of Cape Town, South Africa

CASPER * www.baylor.edu/casper

It all started with Small Satellites

RL: Small Satellites - Future Trends and Missions

Small Satellites vs. Large Satellites?

Small Satellites: An IAA Perspective

Trends observed by the IAA Permanent Committee on Small Satellite Missions:

- Increase in <u>number of spacecraft</u> (multi-satellite missions, etc.)
- Increase in <u>number of space-faring countries</u>: 40 by 2000, 90 by 2019 maybe 100 by end of 2020?
- After a reduction in size (with cubesats since 2003) now increase in mass due to <u>available</u> <u>launches</u> and <u>limitations (like science return</u>) of smallest satellites classes
- Small satellites not always in competition with "Big Birds" anymore – and taken <u>seriously</u>!

Source: Small Satellite Market –

Global Forecast to 2022 (2017)

Science Mission Opportunities through Small Satellites

- "Exploration is where microsatellites will hit their home run." M. Griffin, former NASA Administrator
- High Earth Orbit/Lagrangian Point Missions

www.baylor.edu/casper

ASPER

- Very Low Earth Orbit (VLEO) Missions
- Cis-/Trans-Lunar and Lunar Earth-Moon System Missions
- High-Risk In-Situ Detection
- Short Duration Missions
- Long Duration (e.g. very low thrust) Missions
- RL: Small Satellites Future Trends and Missions

- Networks (Distributed and or Segmented Missions)
- Pico/Nano Satellite Distributor/Carrier Missions
- Continuous, Stored, or Modular
 Replacements
- Mixed constellations of several small satellite classes

Some Thoughts on Future Trends (I)

"Don't stop me now" - widen the base at the development cycle: increase the number of pre-phase A studies

→ increase the idea base (and the out-of-the-box thinking)

"Ask for a ride" – talk to your (beloved ⁽ⁱ⁾) space agency about piggy-back ride-opportunities on own or collaborative launches

"Shall we dance?" – small satellite historic development showed that international collaboration beyond science participation/payload contribution

- → widens the component supplier base (for more modular designs)
- ➔ increases number of missions
- → creates demand in overall growth in launch opportunities
- ➔ enables lower-cost missions

RL: Small Satellites – Future Trends and Missions

"Do one thing well" – simplifying your objectives lowers the mission complexity and therefore costs (nothing new but maybe worth the reminder):

 \rightarrow small satellites are perfect for that

"Use the power of the... onboard computer" – low-cost high-performance on-board computer power is more and more available and its growth exceeds the increase in larger communication bandwidth – especially when shared in in distributed or segmented small satellite missions:

 \rightarrow increase your focus on software than just on hardware: on-board processing!

RL: Small Satellites – Future Trends and Missions

SPER
imes www.baylor.edu/casper

Some Thoughts on Future Trends (III)

"Come Together!" – Strong university small satellite programs as well as strong space agency and industry programs do not exclude each other

 \rightarrow bridge the gap and grow in joint collaboration

"Let's mix it up" – combine space elements (including various classes of small satellites) with airborne elements, sea elements and ground elements

➔ systems of systems approach

"Outnumber your investigated subject" – take benefit of the advantage of distributed small satellite missions:

- → for increased fulfillment of objectives (like science return)
- \rightarrow to address risks or due to high risk mission design
- → due to low cost/expendability (or what René calls the "TIE-Fighter Effect")

RL: Small Satellites - Future Trends and Missions

ESA, ISA

Sonar/ESP